p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23.78C24, C22.137C25, C42.120C23, C4.442- 1+4, C4.932+ 1+4, D4⋊6D4⋊40C2, D4⋊3Q8⋊37C2, Q8⋊6D4⋊29C2, C4⋊C4.324C23, (C2×C4).127C24, C4⋊Q8.352C22, (C4×D4).249C22, (C2×D4).329C23, C22⋊C4.52C23, (C4×Q8).235C22, (C2×Q8).467C23, C4⋊D4.120C22, C4⋊1D4.118C22, (C22×C4).397C23, (C2×C42).967C22, C22⋊Q8.235C22, C2.66(C2×2+ 1+4), C2.45(C2×2- 1+4), C42.C2.84C22, C22.26C24⋊50C2, C4.4D4.181C22, C22.34C24⋊23C2, C22.31C24⋊26C2, C42⋊C2.243C22, C22.56C24⋊10C2, C23.37C23⋊50C2, C22.D4.15C22, (C2×C4⋊C4).721C22, (C2×C4○D4).242C22, SmallGroup(128,2280)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.137C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=b, f2=g2=a, ab=ba, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 892 in 557 conjugacy classes, 384 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C4⋊1D4, C4⋊Q8, C2×C4○D4, C22.26C24, C23.37C23, C22.31C24, C22.34C24, D4⋊6D4, Q8⋊6D4, D4⋊3Q8, C22.56C24, C22.137C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, 2- 1+4, C25, C2×2+ 1+4, C2×2- 1+4, C22.137C25
(1 27)(2 28)(3 25)(4 26)(5 29)(6 30)(7 31)(8 32)(9 13)(10 14)(11 15)(12 16)(17 50)(18 51)(19 52)(20 49)(21 36)(22 33)(23 34)(24 35)(37 60)(38 57)(39 58)(40 59)(41 64)(42 61)(43 62)(44 63)(45 56)(46 53)(47 54)(48 55)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 10)(2 9)(3 12)(4 11)(5 22)(6 21)(7 24)(8 23)(13 28)(14 27)(15 26)(16 25)(17 43)(18 42)(19 41)(20 44)(29 33)(30 36)(31 35)(32 34)(37 46)(38 45)(39 48)(40 47)(49 63)(50 62)(51 61)(52 64)(53 60)(54 59)(55 58)(56 57)
(1 38)(2 37)(3 40)(4 39)(5 44)(6 43)(7 42)(8 41)(9 53)(10 56)(11 55)(12 54)(13 46)(14 45)(15 48)(16 47)(17 36)(18 35)(19 34)(20 33)(21 50)(22 49)(23 52)(24 51)(25 59)(26 58)(27 57)(28 60)(29 63)(30 62)(31 61)(32 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 27 7)(2 32 28 8)(3 29 25 5)(4 30 26 6)(9 36 13 21)(10 33 14 22)(11 34 15 23)(12 35 16 24)(17 53 50 46)(18 54 51 47)(19 55 52 48)(20 56 49 45)(37 41 60 64)(38 42 57 61)(39 43 58 62)(40 44 59 63)
(1 15 27 11)(2 16 28 12)(3 13 25 9)(4 14 26 10)(5 36 29 21)(6 33 30 22)(7 34 31 23)(8 35 32 24)(17 63 50 44)(18 64 51 41)(19 61 52 42)(20 62 49 43)(37 47 60 54)(38 48 57 55)(39 45 58 56)(40 46 59 53)
G:=sub<Sym(64)| (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,13)(10,14)(11,15)(12,16)(17,50)(18,51)(19,52)(20,49)(21,36)(22,33)(23,34)(24,35)(37,60)(38,57)(39,58)(40,59)(41,64)(42,61)(43,62)(44,63)(45,56)(46,53)(47,54)(48,55), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,10)(2,9)(3,12)(4,11)(5,22)(6,21)(7,24)(8,23)(13,28)(14,27)(15,26)(16,25)(17,43)(18,42)(19,41)(20,44)(29,33)(30,36)(31,35)(32,34)(37,46)(38,45)(39,48)(40,47)(49,63)(50,62)(51,61)(52,64)(53,60)(54,59)(55,58)(56,57), (1,38)(2,37)(3,40)(4,39)(5,44)(6,43)(7,42)(8,41)(9,53)(10,56)(11,55)(12,54)(13,46)(14,45)(15,48)(16,47)(17,36)(18,35)(19,34)(20,33)(21,50)(22,49)(23,52)(24,51)(25,59)(26,58)(27,57)(28,60)(29,63)(30,62)(31,61)(32,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,27,7)(2,32,28,8)(3,29,25,5)(4,30,26,6)(9,36,13,21)(10,33,14,22)(11,34,15,23)(12,35,16,24)(17,53,50,46)(18,54,51,47)(19,55,52,48)(20,56,49,45)(37,41,60,64)(38,42,57,61)(39,43,58,62)(40,44,59,63), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,36,29,21)(6,33,30,22)(7,34,31,23)(8,35,32,24)(17,63,50,44)(18,64,51,41)(19,61,52,42)(20,62,49,43)(37,47,60,54)(38,48,57,55)(39,45,58,56)(40,46,59,53)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,13)(10,14)(11,15)(12,16)(17,50)(18,51)(19,52)(20,49)(21,36)(22,33)(23,34)(24,35)(37,60)(38,57)(39,58)(40,59)(41,64)(42,61)(43,62)(44,63)(45,56)(46,53)(47,54)(48,55), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,10)(2,9)(3,12)(4,11)(5,22)(6,21)(7,24)(8,23)(13,28)(14,27)(15,26)(16,25)(17,43)(18,42)(19,41)(20,44)(29,33)(30,36)(31,35)(32,34)(37,46)(38,45)(39,48)(40,47)(49,63)(50,62)(51,61)(52,64)(53,60)(54,59)(55,58)(56,57), (1,38)(2,37)(3,40)(4,39)(5,44)(6,43)(7,42)(8,41)(9,53)(10,56)(11,55)(12,54)(13,46)(14,45)(15,48)(16,47)(17,36)(18,35)(19,34)(20,33)(21,50)(22,49)(23,52)(24,51)(25,59)(26,58)(27,57)(28,60)(29,63)(30,62)(31,61)(32,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,27,7)(2,32,28,8)(3,29,25,5)(4,30,26,6)(9,36,13,21)(10,33,14,22)(11,34,15,23)(12,35,16,24)(17,53,50,46)(18,54,51,47)(19,55,52,48)(20,56,49,45)(37,41,60,64)(38,42,57,61)(39,43,58,62)(40,44,59,63), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,36,29,21)(6,33,30,22)(7,34,31,23)(8,35,32,24)(17,63,50,44)(18,64,51,41)(19,61,52,42)(20,62,49,43)(37,47,60,54)(38,48,57,55)(39,45,58,56)(40,46,59,53) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,29),(6,30),(7,31),(8,32),(9,13),(10,14),(11,15),(12,16),(17,50),(18,51),(19,52),(20,49),(21,36),(22,33),(23,34),(24,35),(37,60),(38,57),(39,58),(40,59),(41,64),(42,61),(43,62),(44,63),(45,56),(46,53),(47,54),(48,55)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,10),(2,9),(3,12),(4,11),(5,22),(6,21),(7,24),(8,23),(13,28),(14,27),(15,26),(16,25),(17,43),(18,42),(19,41),(20,44),(29,33),(30,36),(31,35),(32,34),(37,46),(38,45),(39,48),(40,47),(49,63),(50,62),(51,61),(52,64),(53,60),(54,59),(55,58),(56,57)], [(1,38),(2,37),(3,40),(4,39),(5,44),(6,43),(7,42),(8,41),(9,53),(10,56),(11,55),(12,54),(13,46),(14,45),(15,48),(16,47),(17,36),(18,35),(19,34),(20,33),(21,50),(22,49),(23,52),(24,51),(25,59),(26,58),(27,57),(28,60),(29,63),(30,62),(31,61),(32,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,27,7),(2,32,28,8),(3,29,25,5),(4,30,26,6),(9,36,13,21),(10,33,14,22),(11,34,15,23),(12,35,16,24),(17,53,50,46),(18,54,51,47),(19,55,52,48),(20,56,49,45),(37,41,60,64),(38,42,57,61),(39,43,58,62),(40,44,59,63)], [(1,15,27,11),(2,16,28,12),(3,13,25,9),(4,14,26,10),(5,36,29,21),(6,33,30,22),(7,34,31,23),(8,35,32,24),(17,63,50,44),(18,64,51,41),(19,61,52,42),(20,62,49,43),(37,47,60,54),(38,48,57,55),(39,45,58,56),(40,46,59,53)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2L | 4A | ··· | 4F | 4G | ··· | 4Y |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | 2- 1+4 |
kernel | C22.137C25 | C22.26C24 | C23.37C23 | C22.31C24 | C22.34C24 | D4⋊6D4 | Q8⋊6D4 | D4⋊3Q8 | C22.56C24 | C4 | C4 |
# reps | 1 | 2 | 1 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 2 |
Matrix representation of C22.137C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,4,1,0,0,0,0,2,4,4,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,1,1,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[3,0,2,3,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0],[4,1,0,4,0,0,0,0,3,1,1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C22.137C25 in GAP, Magma, Sage, TeX
C_2^2._{137}C_2^5
% in TeX
G:=Group("C2^2.137C2^5");
// GroupNames label
G:=SmallGroup(128,2280);
// by ID
G=gap.SmallGroup(128,2280);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,352,2019,570,136,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b,f^2=g^2=a,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations